Exam II: MTH 420, Spring 2018

Ayman Badawi

Taha Ameen 60/60

QUESTION 1. Let R be a finite commutative ring with 1 . Assume that $A B=\{0\}$ for some maximal ideals A, B of R.
(i) Prove that $|R|=p_{1}^{n} p_{2}^{m}$ for some prime numbers p_{1}, p_{2} and for some integers n, m.
(ii) (up to isomorphism), describe the structure of R.
(iii) How many maximal ideals does R have?

QUESTION 2. (i) Let E be an integral domain such that $\operatorname{char}(E)=0$. Prove that E has a subring F that is ringisomorphic to Z (Hint: As I explained in class, construct a ring-homomorphism from Z into E that is one to one, note that now we can conclude that Z is the smallest integral domain that has characteristic equals 0)
(ii) Let F be a field such that $\operatorname{char}(F)=0$. Prove that F has a subfield L such that L is ring-isomorphic to Q. (note write $a / b=a b^{-1}$ for some a, b in $\mathrm{Z}, b \neq 0$ and see my hint above. Hence we conclude that Q is the smallest field that has characteristic 0)
(iii) Prove that the identity map from Z ONTO Z is the only ring-isomorphism from Z ONTO Z
(iv) Prove that the identity map from Q ONTO Q is the only ring-isomorphism from Q ONTO Q

QUESTION 3. (as I promised in class). Let $F \subset E$ be fields extension such that E is a finite field. Prove that E is ring-isomorphic to $F[x] /(f(x))$ for some monic irreducible polynomial $f(x)$ over F that satisfies $f(a)=0$, where $\left(E^{*},.\right)=<a>$.

QUESTION 4. (JUST BEAUTIFUL !!!!)

(i) Let $E=G F\left(p^{n}\right)$. Prove that every monic IRREDUCIBLE polynomial of degree n over Z_{p} splits completely in E. (Hint: let $f(x)=x^{n}+\ldots+a_{1} x+a_{0}$ be a monic irreducible polynomial of degree n over Z_{p}. We know that $f(x)$ splits completely in $F=Z_{p}[x] /(f(x))$. Note $|F|=|E|$. Thus F is ring-isomorphic to E. Let $L: F \rightarrow E$ be a ring-isomorphism. Show that $L(a)=a$ for every $a \in Z_{p}$. Now let b in F such that $f(b)=b^{n}+\ldots+a_{1} b+a_{0}=0$. Show that $\mathrm{f}(\mathrm{L}(\mathrm{b}))=0$. Hence $L(b)$ is a root of $f(x)$.)
(ii) (WAW! indeed) Fix an integer k and a prime number p. Let $h=p^{k}$. Prove that the product of ALL monic IRREDUCIBLE polynomials over Z_{p} whose degrees divide k is equal to $f(x)=x^{h}-x$ (hint: We know that $G F\left(p^{d}\right)$ is a subfield of $G F\left(p^{k}\right)$ if and only if $d \mid k$. Now use (i) and the fact that $f(x)$ splits completely in $G F\left(p^{k}\right)$ and it has no multiple roots and $f(x)$ has exactly p^{k} roots,)
(iii) (NICE!, calculation) Let p be a prime number
a. Find the number of all ALL monic irreducible polynomials of degree 2 over Z_{p}. (hint: Consider $E=G F\left(p^{2}\right)$ and use (ii))
b. Find the number of all ALL monic irreducible polynomials of degree 3 over Z_{p}. (hint: Consider $E=G F\left(p^{3}\right)$ and use (ii))
c. Let b be a prime number. Find the number of all ALL monic irreducible polynomials of degree b over Z_{p}. (hint: Consider $E=G F\left(p^{b}\right)$ and use (ii))
d. Find the number of all ALL monic irreducible polynomials of degree 4 over Z_{p}. (hint: Consider $E=G F\left(p^{4}\right)$, use (ii), and note that you already know the number of all ALL monic irreducible polynomials of degree 2 over Z_{p}.)
e. Find the number of all ALL monic irreducible polynomials of degree 8 over Z_{p}. (hint: Consider $E=G F\left(p^{8}\right)$, use (ii), and note that you already know the number of all ALL monic irreducible polynomials of degrees 2 and 4 over Z_{p}.)

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

ANSWER 2: E ar an Integral domain with char $(E)=0$.
(i) Jo show; $\exists F \subset E$ s.t. F is a sebring of E and $F \approx \mathbb{Z}$.

Proof: consider $f: \mathbb{Z} \longrightarrow E \quad s \cdot t \cdot f(m)=m \cdot 1_{E}$

$$
\text { ie. } f(m)=\underbrace{1_{E}+1_{E}+\ldots+1_{E}}_{m \text { times }}
$$

Then f is a ring homomorphism

$$
\begin{aligned}
& \rightarrow f(m+n)=(m+n) \cdot 1_{E}=m \cdot 1_{E}+n \cdot 1_{E}=f(m)+f(n) \\
& \rightarrow f(m+n)=(m * n) \cdot 1_{E}=m \times 1_{E} * n * 1_{E}=f(m) * f(n)
\end{aligned}
$$

we show f iv ore-to one by showing $\operatorname{ker}(f)=\{0\}$.
DENY.

$$
\begin{aligned}
& \therefore \exists l \in \mathbb{Z} \text { sit. } f(l)=0 . \\
& \therefore f(l)=0 \Rightarrow l \cdot 1_{E}=0 \Rightarrow \operatorname{char}(E) \neq 0
\end{aligned}
$$ CONTRADICTION.

(i) Let F be the Image of f.
$1 / \hbar$ then $\frac{\mathbb{Z}}{\operatorname{Ker}(f)} \approx \operatorname{sm}(f) \Rightarrow \frac{\mathbb{Z}}{\{0\}} \approx F \Rightarrow \mathbb{Z} \approx F$
and F is a sebring of E.
(w) No show, whew F is a field with char $(F)=0$,
show $\exists L \subset F$ s.t. L is a subfield of F and $L \approx Q$.
Proof: consider $B: Q \rightarrow F$

$$
\text { s.t. } f\left(\frac{a}{b}\right)=\frac{a * 1_{F}}{b * 1_{F}}=a * 1_{F} *\left(b * 1_{F}\right)^{-1}
$$

Then of is a ring homomorphism

$$
\begin{aligned}
\longrightarrow f\left(\frac{a}{b}+\frac{c}{d}\right) & =f\left(\frac{a d+b c}{b d}\right)=(a d+b c) * 1_{F} *\left(b d * 1_{F}\right)^{-1} \\
& =\left(a d * 1_{F}+b c * 1_{F}\right) *\left(b * 1_{F}\right) \cdot\left(d+\frac{1}{F}\right) \\
& =\left(a * 1_{F} \times d * 1_{F}+b * 1_{F} * c * 1_{F}\right) *\left(b * 1_{F}\right) *\left(d * 1_{F}\right)^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(a * 1_{F}\right) *\left(d * 1_{F}\right) \cdot\left(d * 1_{F}\right)^{-1} \cdot\left(b \cdot 1_{F}\right)^{-1}+\left(b * 1_{F}\right) \cdot\left(b \cdot 1_{F}\right)^{-1} *(c \times 1) \\
& =\left(a * 1_{F}\right) \cdot\left(b * 1_{F}\right)^{-1}+\left(c * 1_{F}\right) *\left(d * 1_{F}\right)^{-1} \\
& =f\left(\frac{a}{b}\right)+f\left(\frac{c}{d}\right) \\
& \longrightarrow f\left(\frac{a}{b} * \frac{c}{d}\right)=f\left(\frac{a c}{b d}\right)=\left(a c * 1_{F}\right) \times\left(b d^{-1} * 1_{F}\right)^{-1} \\
& =\left(a * 1_{F}\right) *\left(c * 1_{F}\right) *\left(b * 1_{F}\right)^{-1} *\left(d * 1_{F}\right)^{-1} \\
& =\left(a * 1_{F}\right) \times\left(b * 1_{F}\right)^{-1} \times\left(c * 1_{F}\right) *\left(d * 1_{F}\right)^{-1} \\
& =f\left(\frac{a}{b}\right) * f\left(\frac{c}{d}\right)
\end{aligned}
$$

we chow: f is one-to-one. by showing $\operatorname{ker}(f)=\{0\}$. Deny. $\quad \therefore \exists \frac{m}{n} \in \mathbb{Q} \cdot t \cdot f\left(\frac{m}{n}\right)=0$ and $m \neq 0$. Then $f\left(\frac{m}{n}\right)=\left(m+1_{F}\right) \times\left(n+1_{F}\right)^{-1}=0$.
since Fir a field Gand hence an Integral domain), we have $m \cdot 1_{F}=0$ or $n * 1_{F}=0 \quad\binom{n \neq 0}{m \neq 0}$ This contradicts char $(F)=0$. Contradiction!

$$
\therefore \quad \operatorname{Let} L=\operatorname{in}(f)
$$

$\Rightarrow \frac{Q}{\{0\}} \approx L \Rightarrow Q \approx L$ By Fires Isomorphism Theorem,
we show: L is a field.

- clearly, $1_{F} \in L . \quad\left(\because \exists \frac{1}{1} \in \mathbb{Q}\right.$ s.t. $\left.f\left(\frac{1}{1}\right)=1_{F}\right)$.
. $\forall \frac{a \times 1_{F}}{b \times \frac{1_{F}}{F}} \in L \quad \exists \frac{b \times 1_{F}}{a+1_{F}}=f\left(\frac{b}{a}\right) \in L$ s.t. $\left(\frac{a \times 1_{F}}{b \times 1_{F}}\right)\left(\frac{b+1_{F}}{a+1_{P}}\right)=1_{F}$ $\therefore \forall u \in L \quad \exists u^{-1} \in L \Rightarrow L$ is a Field.
(aw) Do show: $\forall a \in \mathbb{Z}, f(a)=a$ is the Only Ring isomorphism frown \mathbb{Z} onto \mathbb{Z}.

Proof: Deny. $\therefore f(1) \neq 1 . \Longrightarrow$ Let $f(1)=k, k \in \mathbb{Z}$.

$$
\begin{aligned}
& \therefore f\left(1^{2}\right)=[f(1)]^{2} \Longrightarrow f(1)=f(1) \cdot f(1) \\
& \therefore k=k^{2} \Rightarrow k(k-1)=0 .
\end{aligned}
$$

Since IL is an Integral domain, $k=0$ or $k=1$ By Assumption, $k \neq 1 . \quad \dot{k}=0$. But, this is the triural map and is not an Isomorphism. contradiction.

$$
\therefore \quad f(1)=1
$$

Now: To prone: $f(1)=1 \Rightarrow f(n)=n$ Case 1: $n \geq 1$ By Math Induction: Assume $f(k)=k$.
$B / 6$ Thew $f(k+1)=f(k)+f(1)=k+1$.
since $f(1)=1 \Rightarrow f(n)=n \quad \forall n \geq 1$.
Case 2: $n<0 \quad$ clearly, $f(0)=0$.

$$
\therefore f(n+-n)=f(n)+f(-n)=0 \Rightarrow f(n)=-f(-n)
$$

since $-n>0$, we have $f(n)=-(-n)=n$

$$
\therefore f(n)=n \forall n
$$

(int).
By Same Logic as (iv), we have $f(1)=1$.
No show: $f\left(\frac{p}{q}\right)=\frac{p}{q} \forall \frac{p}{q} \in \mathbb{Q}$.
Since $q^{*} \frac{p}{q}=p$ and $q \in \mathbb{Z}$, we have:

$$
\begin{gathered}
\left.q * f\left(\frac{p}{q}\right)=f(q) * f\left(\frac{p}{q}\right)=f\left(q * \frac{p}{q}\right)=f(p)=p \cdot \right\rvert\, * p, q \in \mathbb{1} . \\
\therefore q * f\left(\frac{p}{q}\right)=p \Rightarrow f\left(\frac{p}{q}\right)=\frac{p}{q}
\end{gathered}
$$

Wi \therefore the Identity Map is the ONLY Map.

QOESTION 3: Given: $F \subset E$ where E ir a finite field.
Io prove: $E \approx \frac{F[x]}{(f(x))}$ for come Monic trreducible polynomial $f(x)$ s.t. $f(a)=0$ where $\langle a\rangle=(E, *)$

Proof: Let $\varphi: F[x] \longrightarrow E$ s.t. $\varphi(p(x))=p(a)$ This is a ring hoonomorphison.

$$
\begin{aligned}
& \text { This is a ring hoonomorphism } . \\
& \text { - } \phi(p(p+q(a))=(p+q)(a)=p(a)+q(a)=\phi(p(a))+\phi(q(a))
\end{aligned}
$$

Claim: The mapping is onto.
we show: $\forall m \in E \quad \exists k(x) \in F[x] \quad$ s.t. $k(a)=m$
4/, Since $m=a_{l}^{l}$ for some l,
let $k(a)=x^{\ell} \Rightarrow q(k(x))=k(a)=a^{l}=m$.
Claim: $\operatorname{ker}(\varphi)=(f(x))$ for some Monic Irreducible polynoninat $f(a)$ s.t. $f(a)=0$.
clearly, $\operatorname{ker}(\phi) \neq\{0\}$. (else $F[x] \approx E$ but $F[x]$ is $N \in V=R$
\therefore we expect kier (p) to be of the form $(f(x))$, afield) because $F[x]$ is a PID.
$\rightarrow f(x)$ must be Drreduable
DENY. \& $f(x)=p(x) \star q(x) \Longrightarrow(p(x) \| q(x))$ is NOT a prime Ideal.

$$
\therefore \frac{F[x]}{(p(x) q(x))} \approx E \Rightarrow \begin{gathered}
E \text { ix not an Integral } \\
\text { Domain }
\end{gathered}
$$

contradiction
$\therefore f(x)$ MUST be Irreducible.
$\longrightarrow f(x)$ is MoN/C.

- Else, $f(x)$ car be made Monic by dividing by the leading coefficient, as all coefficients are pion a guild.

$$
\longrightarrow f(a)=0 .
$$

$$
f(x) \in \operatorname{ker}(\phi) \Rightarrow \varphi(f(x))=0 \Rightarrow f(a)=0 .
$$

\therefore By First Isomorphism Theorem,

$$
\frac{F[x]}{(f(x))} \approx E \text { for a Monist irreducible }
$$

ANSWER 4: Ci) $E=g$ g $\left(p^{n}\right)$. Show that Every Monic Eradicable polynomial of degree n cover $\frac{\pi}{p}$ splits in E.
Proof: Consider $f(x)=x^{2}+\ldots+a_{1} x+a_{0}$ where f is Ireedocula. over \mathbb{Z}_{p}. then f splits completely in $F=\frac{\mathbb{X}_{p}[x]}{(f(x))}$.
\longrightarrow clearly, $F \approx E$ (Ring Isomorphism).
$\therefore \exists L: F \longrightarrow E$ s.t. L is a ring Isomorphism.
clearly, $|F|=|E|=p^{n} \Longrightarrow \operatorname{char}(F)=\operatorname{char}(E)=p$.
$\therefore \exists M \subset F$ and $N \subset E$ s.t. $M \approx N \approx \mathbb{Z}_{p}$.
(For simplenotation, we say $\mathbb{Z}_{p} \subset F$ and $\mathbb{Z}_{p} \subset E$)
\rightarrow Io show: $L(a)=a \quad \forall a \in \mathbb{Z}_{p}$.
clearly $L(1)=1 \mid \because L\left(1^{*} * 1\right)=L(1)=L(1) \otimes L(1)$
:By Induction (from 1 top) If $L(1)=\lambda \Rightarrow \lambda(\lambda-1)=0 \Rightarrow \lambda=1$
Assume $f(a)=a$ is true $\quad\left(\because I_{P}\right.$ is a Field and $\lambda=0$ is

$$
\begin{aligned}
& \psi \\
& f(a+1)=f(a)+f(1)=a+1 \text {. } \\
& \Perp \\
& \eta / 4 \quad f(a)^{*}=a \quad \forall a \in \mathbb{I}_{p}
\end{aligned}
$$

$f(b)=0 \Longrightarrow f(x)=(x-b)=f(x)$ but $f(x)$ is irreducible over $\mathbb{Z}_{p} \Rightarrow b \in F \mid \mathbb{Z}_{p}$.

Lo show: $f(L C b)=0$.
Clair: f maps Root to Root.
Proof: $f(L(b))=[L(b)]^{n}+a_{n-1}[L(b)]^{n-1}+\ldots+a_{1}[L(b)]+a_{0}-(*)$ Since $a_{i} \in \mathbb{Z}_{p} \forall i, \therefore a_{i} *[L(b)]^{i}=L\left(a_{i}\right) \times[L(b)]^{i}=L\left(a_{i} \times b^{i}\right)$ since $L\left(a_{i} * b^{i}\right)+L\left(a_{j} * b^{j}\right)=L\left(a_{i} b^{i}+a_{j} b^{j}\right)$, we have:

$$
(*)=L\left(b^{n}+a_{n-1} b^{n-1}+\ldots+a_{1} b+a_{0}\right)=L(0)=0
$$

$\therefore L(b)$ is a root of $f(x)$
(可) Let p be prime and $k \in \mathbb{Z} . \quad h=p^{k}$.
Do show: Product of all Monic Irreducible Polynomials over \mathbb{Z}_{p} whose degrees divide $k=f(x)=x^{h}-x$.
Proof: $f(x)$ has exactly, $h=p^{k}$ roots.

- $\operatorname{ged}\left(f(x), f^{\prime}(x)\right)=1 \Rightarrow f(x)$ has No Repeated Roots
- $f(x) \in \mathbb{Z}_{p} \Rightarrow f(x)$ spits completely in $g F\left(p^{k}\right)$.
\longrightarrow consider d s.t. d / k. Then $\exists g F\left(p^{d}\right) \subseteq g F\left(p^{k}\right)$ It will not be the case that $f(x)$ spits completely in $\mathbb{I}_{p} d$. However, in these fields, $f(x)$ car be written as a product of irreducibles of Higher degrees.

$$
\therefore f(x)=x^{h}-x=k_{1}(x) \cdot k_{2}(x) \cdot k_{3}(x) * \ldots * k_{l}(x)
$$

claim: k_{i} 's are all possible Erreducibles of all degrees that divide k.
Proof: \rightarrow It is clear that k_{i} 's are irreducible
\rightarrow Since $f(x)$ splits in $g F\left(p^{k}\right), \therefore \operatorname{deg}\left(k_{i}\right) \mid p^{k} \forall_{i}$ Since $k_{i} \neq k_{j} \quad \forall i \neq j \quad\left(\operatorname{god}\left(f(x), f^{\prime}(x)\right)=1\right)$
\therefore Each Tonic Irrediable polynomial (whose degree divides n) occurs ace and only once.

$$
\therefore \text { Product }=x^{h}-x \text {. }
$$

(\bar{a})
(a) Let $E=G F\left(p^{2}\right)$.
sereducible, Monic
\exists Exactly p polynomials of degree 1 over \mathbb{Z}_{p}, namely $x-0, x-1, x-2, \ldots, x-(p-1)$.
The product of all ob these gives up to an ' x 'term.
\therefore The remaining degrees will be due to degree 2 polynomials (only other number that duides 2).
\therefore \#of Polynomials:
(since total degree: p^{2})
(b) Let $E=g F\left(p^{3}\right)$.

Divide by 2 because each Leg (2) polgnom contributes to the degree by 2 .
\exists Exactly p Moire Irreducible polynomials of degree 1 over \mathbb{Z}_{p} as mentioned above, and their product gives up to degree ' p '.
\therefore \# of polynomials: $\left.\frac{p^{3}-p}{3} \right\rvert\,:$ Each polynomial degree by 3 .
C.) By same reasoning, \# of polynomials:

cd) $t=g F\left(p^{4}\right) \Rightarrow$ Product of all degree 1,2,4 polynomid is $x^{p^{4}}-x$.
\# polynomials of degree $1: p$
\# Polynomials of degree $2: \frac{p^{2}-p}{2}$

- Product of all Polynoivals \Rightarrow sum of degrees of each
\therefore \# of Polynomials of degree 4:

1 All other polynomials contribute to a total degree of p^{2}
(e) \# of Polynomials of degree 1: p. \# of polynomials of degree $2: \frac{p^{2}-p}{2} \left\lvert\, \underbrace{x_{\text {degree }}^{2}=p^{2}-p}_{\frac{p^{2}-p \text { times } \Rightarrow}{2} \Rightarrow}\right.$
\# of Polynomials of degree $4: \frac{p^{4}-p^{2}}{4}\left|\frac{x^{4}+x^{4}+\ldots \times x^{4}}{\frac{p^{4}-p^{2}}{4} \text { times } \Rightarrow \text { degree: } p^{4}-p^{2}}\right|$
\therefore So far: $\sum_{\text {Al degrees }}=p^{4}$.
Since final $f(x)$ has degree 8,
\# of polynomials:

